Пределы, Многочлен Тейлора

Математика

Функции и их графики
Пределы
Производные
Векторная алгебра
Корни уравнения
Кривые и поверхности
Комплексные числа
Математическая логика
Дифференцирование и
интегральное исчисление
Дифференциальные уравнения
Интегралы
Курсовые задания
Применение интегралов
Теория функций
комплексного переменного
Двойные интегралы
Дифуры
Элементарная математика
Интегральное исчисление
Математический анализ
Степенные ряды
Вычисление пределов
Типовой расчет
Подготовка к экзамену
Примеры решения задач
Лекции матан
Правило Лопиталя
Элементы теории кривых
Производные и дифференциалы
высших порядков
Непрерывные функции
Предел функции
Последовательности
Формула Тейлора
Определенные интегралы
Кратные интегралы
Тензоры
Интегралы, зависящие
от параметра
Элементы теории поля
Криволинейные интегралы
Тройные интегралы
Задачи по Кузнецову
Вычислить предел
Построить график
Комбинаторика
Физика
Кинематика материальной точки
Динамика материальной точки
Гравитация Космические скорости
Неинерциальные системы отсчета
Колебания
Специальная теория относительности
Компьютерные сети
Вычислительные сети
Основы передачи
дискретных данных
Базовые технологии
Построение локальных сетей
Сетевой уровень
Глобальные сети
Средства анализа
Протокол пересылки
файлов (FTP)
Монтаж локальной сети
Семейство протоколов TCP/IP
Топология ЛВС
Стандартные локальные сети
Информатика
Учебник по программированию
C++
Служба каталогов
Active Directory
Компьютерная безопасность
Брандмауэры
Сетевая архитектура
Клиент и сервер
Турбо Паскаль Практикум
Процедуры и функции Pascal
Примеры программирования
Архитектура ЭВМ
Pascal. Курс лекций
Сетевые операционные системы
Язык запросов SQL
Логическое программирование
Программа Проводник
Электронная почта E-Mail
Защита компьютерной
информации
 

 

 

Пределы при разных условиях. Некоторые частные случаи

Пример Пусть $ x_0=0$ и рассматривается функция $ f(x)=2\sin x+1$. Покажем, что $\displaystyle \lim_{x\rightarrow 0}(2\sin x+1)=1.$

Пример Покажем, что предел последовательности $ y_n=\dfrac{1}{n^2}$ равен 0.

Общее определение предела

Определение Пусть $ \mathcal{B}$-- некоторая база и функция $ f(x)$ определена во всех точках $ x$ некоторого окончания $ E_0$ базы $ \mathcal{B}$ (и, значит, определена во всех точках более далёких окончаний $ E\sbs E_0$). Число $ L$ называется пределом функции $ f(x)$ по базе $ \mathcal{B}$ (или при базе $ \mathcal{B}$) и обозначается $\displaystyle L=\lim_{\mathcal{B}}f(x),$

  • Физические приложения двойных интегралов Пример 1 Определить координаты центра тяжести однородной пластины, образованной параболами Решение задач на вычисление интеграла

 

Пример

Замена переменного и преобразование базы при такой замене

Бесконечно малые и локально ограниченные величины и их свойства

В этом разделе мы изучим свойства бесконечно малых величин, то есть величин, стремящихся к 0. В следующих разделах на этой основе мы будем изучать свойства величин, имеющих произвольное значение предела.

Определение Функция $ {\alpha}(x)$ называется бесконечно малой величиной при базе $ \mathcal{B}$, если её предел при данной базе равен 0, то есть $ {\alpha}\xrightarrow {\mathcal{B}}0$.

Общие свойства пределов

Первый и второй замечательные пределы

 Определение   Первым замечательным пределом называется предел $\displaystyle \lim_{x\to0}\frac{\sin x}{x}.$

 Определение   Вторым замечательным пределом называется предел $\displaystyle e=\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n.$

Бесконечно большие величины и бесконечные пределы

Пример

Использование непрерывности функций при вычислении пределов

   Определение Пусть $ x_0$ -- внутренняя точка области определения функции $ f(x)$, то есть функция $ f(x)$ определена при всех $ x$ из некоторого интервала $ (x_0-{\delta};x_0+{\delta})$ ( $ {\delta}>0$), окружающего точку $ x_0$. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0)$

Сравнение бесконечно малых

Таблица эквивалентных бесконечно малых при

Пример

Упражнения на вычисление пределов

Формула Тейлора представления числовой функции многочленом

Многочлен Тейлора

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Формула Тейлора для экспоненты такова: $\displaystyle e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}+R_n(x).$

Получаем формулу Тейлора для синуса: $\displaystyle \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots+
(-1)^{k-1}\dfrac{x^{2k-1}}{(2k-1)!}+R_{2k}(x).$

Упражнение

Оценки ошибок в формулах приближённого дифференцирования

Примеры

        Пример   Рассмотрим функцию $ f(x)=xe^{x^2}$. Найдём её разложение по формуле Тейлора в точке $ x_0=0$. Начнём с того, что напишем ранее найденное разложение для экспоненты,
$\displaystyle e^z=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots+\frac{z^n}{n!}+R_n(z),$
и положим в нём $ z=x^2$:
$\displaystyle e^{x^2}=1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\ldots+\frac{x^{2n}}{n!}+R_n(x^2).
$
Теперь умножим левую и правую части этой формулы на $ x$:
$\displaystyle xe^{x^2}=x+x^3+\frac{x^5}{2!}+\frac{x^7}{3!}+\ldots+\frac{x^{2n+1}}{n!}
+xR_n(x^2).$
Заметим, что бесконечно малое при $ x\to0$ выражение $ \tilde R(x)=xR_n(x^2)$ имеет тот же или больший порядок малости, как $ x^{2(n+1)+1}=x^{2n+3}$, и поэтому может рассматриваться как остаточный член $ R_{2n+2}(x)$ в формуле Тейлора для $ f(x)$, а предыдущие слагаемые в правой части формулы -- как многочлен Тейлора данной функции. Так что её искомое разложение найдено.     

Разберём теперь пример того, как полученные разложения элементарных функций можно использовать для раскрытия некоторых неопределённостей.

        Пример   Найдём предел
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}.$
Для начала найдём разложение по формуле Тейлора в точке 0 для числителя:
$\displaystyle e^x-1-x=-1-x+1+x+\frac{x^2}{2}+r_3(x)=
\frac{x^2}{2}+r_3(x),$
где через $ r_3(x)$ обозначен остаточный член, имеющий тот же порядок малости, что и $ x^3$. Разложение для знаменателя имеет вид:
$\displaystyle \sqrt{1-x}-\cos\sqrt{x}=(1-\frac{x}{2}-\frac{x^2}{8}+s_3(x))-
(1-\frac{x}{2}-\frac{x^2}{24}+t_3(x)),$
где остаточные члены $ s_3(x)$ и $ t_3(x)$ тоже имеют тот же порядок малости, что и $ x^3$, при $ x\to0$. Выполняя приведение подобных членов, получаем, что знаменатель равен
$\displaystyle -(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x).$
Итак,
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}=
 \lim_{x\to0}\dfrac{\frac{x^2}{2}+r_3(x)}
 {-(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x)}=$   
$\displaystyle =\lim_{x\to0}\dfrac{\frac{1}{2}+\frac{r_3(x)}{x^2}}
 {-(\frac{1}{...
...rac{s_3(x)-t_3(x)}{x^2}}=
 \dfrac{\frac{1}{2}}{-(\frac{1}{8}+\frac{1}{24})}=-3.$   
Математика Интегральное исчисление