Производные Свойства дифференцируемых функций

Розетки и выключатели АББ Династия, анализ сайта abb dynasty.

Математика

Функции и их графики
Пределы
Производные
Векторная алгебра
Корни уравнения
Кривые и поверхности
Комплексные числа
Математическая логика
Дифференцирование и
интегральное исчисление
Дифференциальные уравнения
Интегралы
Курсовые задания
Применение интегралов
Теория функций
комплексного переменного
Двойные интегралы
Дифуры
Элементарная математика
Интегральное исчисление
Математический анализ
Степенные ряды
Вычисление пределов
Типовой расчет
Подготовка к экзамену
Примеры решения задач
Лекции матан
Правило Лопиталя
Элементы теории кривых
Производные и дифференциалы
высших порядков
Непрерывные функции
Предел функции
Последовательности
Формула Тейлора
Определенные интегралы
Кратные интегралы
Тензоры
Интегралы, зависящие
от параметра
Элементы теории поля
Криволинейные интегралы
Тройные интегралы
Задачи по Кузнецову
Вычислить предел
Построить график
Комбинаторика
Физика
Кинематика материальной точки
Динамика материальной точки
Гравитация Космические скорости
Неинерциальные системы отсчета
Колебания
Специальная теория относительности
Компьютерные сети
Вычислительные сети
Основы передачи
дискретных данных
Базовые технологии
Построение локальных сетей
Сетевой уровень
Глобальные сети
Средства анализа
Протокол пересылки
файлов (FTP)
Монтаж локальной сети
Семейство протоколов TCP/IP
Топология ЛВС
Стандартные локальные сети
Информатика
Учебник по программированию
C++
Служба каталогов
Active Directory
Компьютерная безопасность
Брандмауэры
Сетевая архитектура
Клиент и сервер
Турбо Паскаль Практикум
Процедуры и функции Pascal
Примеры программирования
Архитектура ЭВМ
Pascal. Курс лекций
Сетевые операционные системы
Язык запросов SQL
Логическое программирование
Программа Проводник
Электронная почта E-Mail
Защита компьютерной
информации
 

 


Мгновенная скорость при прямолинейном движении

Касательная к кривой на плоскости

Определение

Производная

Итак, согласно предыдущим двум определениям, производная $ f'(x_0)$ функции $ f(x)$ в точке $ x_0$, правая производная $ f'_+(x_0)$ и левая производная $ f'_-(x_0)$ задаются, соответственно, формулами \begin{subequations}\begin{gather}
 f'(x_0)=\lim_{h\to0}\dfrac{f(x_0+h)-f(x_0)}{...
..._-(x_0)=\lim_{h\to0-}\dfrac{f(x_0+h)-f(x_0)}{h},
 \end{gather}\end{subequations}

    • Замечание
    • Закон Фарадея Электродвижущая сила наведенная в замкнутом контуре C, равна скорости изменения магнитного потока, проходящего через данный контур Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания
    • Теорема

Свойства производных

Замечания

Производные некоторых элементарных функций

Найдём производную функции $ f(x)=\sqrt{x}$ в точке $ x>0$.

Рассмотрим функцию $ f(x)=\mathop{\rm tg}\nolimits x$ как отношение $ \dfrac{\sin x}{\cos x}$

Примеры

Дифференциал

Теорема   Функция $ f(x)$ имеет дифференциал $ df(x_0;{\Delta}x)$ в точке $ x_0$ тогда и только тогда, когда она имеет производную $ f'(x_0)$ в этой точке; при этом
$\displaystyle df(x_0;{\Delta}x)=f'(x_0){\Delta}x.$

Производная композиции

Примеры

Примеры

Инвариантность дифференциала

Производная обратной функции

Производные некоторых элементарных функций (продолжение)

Пример

Сводка основных результатов о производных

Производные высших порядков

Пример

Дифференциалы высших порядков и их неинвариантность

Производные функции, заданной параметрически

Пусть задана зависимость двух переменных $ x$ и $ y$ от параметра $ t$, изменяющегося в пределах от $ {\alpha}$ до $ {\beta}$:

$\displaystyle x={\varphi}(t); y=\psi(t); t\in({\alpha};{\beta}).$

Пусть функция $ x={\varphi}(t)$ имеет обратную: $ t={\varphi}^{-1}(x)=\Phi(x)$. Тогда мы можем, взяв композицию функций $ y=\psi(t)$ и $ t=\Phi(x)$, получить зависимость $ y$ от $ x$: $ y=\psi(\Phi(x))$. Зависимость величины $ y$ от величины $ x$, заданная через зависимость каждой из них от параметра $ t$ в виде $ x={\varphi}(t), y=\psi(t)$, называется функцией $ y=y(x)$, заданной параметрически.

 

Производная функции, заданной неявно

 

Приближённое вычисление производных

Примеры и упражнения

Примеры и упражнения 2

Свойства дифференцируемых функций

Четыре теоремы о дифференцируемых функциях

В этом разделе мы рассмотрим некоторые утверждения, касающиеся функций, которые во всех точках данного множества имеют производную. Такие функции называются дифференцируемыми на данном множестве.

Правило Лопиталя

На основе теоремы Коши мы выведем правило, которое даст нам мощный способ вычисления пределов отношений двух бесконечно малых или двух бесконечно больших величин. Сформулируем его сначала для отношения бесконечно малых.

Теорема 5.5(Правило Лопиталя)   Пусть функции $ f(x)$ и $ g(x)$ непрерывны в некоторой окрестности $ E$ точки $ x_0$ и $ f(x_0)=g(x_0)=0$, то есть $ f(x)\to0$ и $ g(x)\to0$ при $ x\to x_0$. Предположим, что при $ x\in E,\;x\ne x_0$ функции $ f(x)$ и $ g(x)$ имеют производные $ f'(x)$ и $ g'(x)$, причём существует предел отношения этих производных: $\displaystyle \lim_{x\to x_0}\dfrac{f'(x)}{g'(x)}=L.$

Замечания

Правило Лопиталя для отношения бесконечно больших

 

Сравнение бесконечно больших величин

Пусть $ \mathcal{B}$ -- некоторая база, и $ f(x)$ и $ g(x)$ -- функции, заданные на некотором окончании этой базы. В главе 2 мы изучали сравнение функций $ f(x)$ и $ g(x)$ при базе $ \mathcal{B}$ в случае, когда они является бесконечно малыми. Здесь же мы изучим сравнение бесконечно больших $ f(x)$ и $ g(x)$.

Примеры

Примеры

Математика Интегральное исчисление