Специальная теория относительности

Математика

Функции и их графики
Пределы
Производные
Векторная алгебра
Корни уравнения
Кривые и поверхности
Комплексные числа
Математическая логика
Дифференцирование и
интегральное исчисление
Дифференциальные уравнения
Интегралы
Курсовые задания
Применение интегралов
Теория функций
комплексного переменного
Двойные интегралы
Дифуры
Элементарная математика
Интегральное исчисление
Математический анализ
Степенные ряды
Вычисление пределов
Типовой расчет
Подготовка к экзамену
Примеры решения задач
Лекции матан
Правило Лопиталя
Элементы теории кривых
Производные и дифференциалы
высших порядков
Непрерывные функции
Предел функции
Последовательности
Формула Тейлора
Определенные интегралы
Кратные интегралы
Тензоры
Интегралы, зависящие
от параметра
Элементы теории поля
Криволинейные интегралы
Тройные интегралы
Задачи по Кузнецову
Вычислить предел
Построить график
Комбинаторика
Физика
Кинематика материальной точки
Динамика материальной точки
Гравитация Космические скорости
Неинерциальные системы отсчета
Колебания
Специальная теория относительности
Компьютерные сети
Вычислительные сети
Основы передачи
дискретных данных
Базовые технологии
Построение локальных сетей
Сетевой уровень
Глобальные сети
Средства анализа
Протокол пересылки
файлов (FTP)
Монтаж локальной сети
Семейство протоколов TCP/IP
Топология ЛВС
Стандартные локальные сети
Информатика
Учебник по программированию
C++
Служба каталогов
Active Directory
Компьютерная безопасность
Брандмауэры
Сетевая архитектура
Клиент и сервер
Турбо Паскаль Практикум
Процедуры и функции Pascal
Примеры программирования
Архитектура ЭВМ
Pascal. Курс лекций
Сетевые операционные системы
Язык запросов SQL
Логическое программирование
Программа Проводник
Электронная почта E-Mail
Защита компьютерной
информации
 

Принцип относительности Галилея.

Величины, которые имеют одно и тоже числовое значение во всех системах отсчета, называются инвариантными.

Постоянство скорости света Справедливость преобразований Галилея может быть проверена сравнением следствий из них с экспериментом.

Преобразования Лоренца Так как преобразования Галилея для достаточно больших скоростей приводят к выводам, противоречащим экспериментам, то появилась необходимость в нахождении других преобразований координат и времени, которые правильно описывают опытные данные.

В силу равноправности систем  и , коэффициент  должен быть в обоих случаях один и тот же.

Для получения формул преобразования времени выполним над последними 2-мя уравнениями следующие процедуры: А) исключим координату  и разрешим получившееся уравнение относительно  Б) исключим координату  и разрешим получившееся уравнение относительно . Имеем для процедуры А):

Физика Примеры решения задач контрольной, курсовой работы

Колебательное движение Основные характеристики гармонического колебания. Колебательным движением называется процесс, при котором система многократно отклоняясь от своего состояния равновесия, каждый раз вновь возвращается к нему. Промежуток времени Т, спустя который процесс полностью повторяется, называется периодом колебания.

.  (12.37).ъ

При скоростях много меньших скорости света () преобразования Лоренца практически не отличаются от преобразований Галилея.

События, происходящие одновременно в разных точках пространства (система ), в силу конечной скорости распространения взаимодействия, не могут оказывать взаимодействия друг на друга и. следовательно, быть причинно связанными.

Для орбитальной скорости Земли  лоренцево сокращение является причиной сокращения диаметра Земли в системе координат, связанной с Солнцем, примерно на .

В какой бы системе отсчета не рассматривалось движение частицы, промежуток собственного времени измеряется по часам системы, в которой частица покоится.

Итак, для преобразований Лоренца (т.е. для релятивистского случая движения со скоростями, близкими к скорости света в вакууме) известны три инварианта: 1. скорость света в вакууме, 2. промежуток собственного времени   и интервал между событиями .

Расстояние  между точками, в которых происходят события, разделенные пространственноподобным интервалом, превышает . Поэтому такие события не могут воздействовать друг на друга и, следовательно, не могут быть причинно связанными.

Преобразование и сложение скоростей Компоненты скорости  частицы в системе  определяются выражением:; . (12.69).

Пусть частица движется параллельно осям  и  в направлении скорости . Тогда  совпадает с модулем скорости частицы   в системе , а  - с модулем скорости  частицы в системе  и формула, определяющая  через  и  , будет иметь вид: .  (12.77).

Определим взаимосвязь компонентов  и  ускорений частицы в системах  и , соответственно.

Релятивистская энергия Из 2-х возможных в ньютоновской механике формулировок   закона Ньютона ( и ) в релятивистской механике справедливо только соотношение:

.  (12.89).

Функции, дифференциалы которых равны друг другу, могут отличаться только на постоянную величину

В полную энергию не входит потенциальная энергия взаимодействия частицы во внешних силовых полях.

Взаимосвязь массы и энергии покоя Согласно формуле для энергии покоя, всякое изменение массы тела  сопровождается изменением энергии покоя :

.  (12.107).

Частицы с нулевой массой Законы ньютоновской механики не допускают существования частиц с нулевой массой.

Как преобразуется скорость и ускорение частицы при переходе от одной инерциальной системы к другой?

Приведите графическую интерпретацию относительности одновременности  событий, происходящих в разных точках пространства и разделенных мнимым интервалом.

Математика Примеры решения задач